
IEEE Copyright Notice
Copyright (c) 2014 IEEE

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Tactical Network Modeller Simulation Tool
Combined discrete event and network back-ends

Stuart Marsden
Dept. of Military Technology
National Defence University

Helsinki, Finland
stuartmarsden@finmars.co.uk

Jouko Vankka
Professor of Military Technology

National Defence University
Helsinki, Finland

jouko.vankka@mil.fi

Abstract—This paper discusses the implementation of a
tactical network simulation tool. The tool is called Tactical
Network Modeller (TNM). TNM uses some novel techniques to
simplify the building of the network model using graph theory
constrained by a hierarchical tree which reflects the organisation
structure. TNM allows models to be constructed using an
Application Programming Interface (API) or a node based User
Interface (UI). When the model is constructed, different
simulation back-ends can be applied to it. A discrete event
simulation and a network emulation back-end are implemented
building on top of open source tools.

TNM is simple to create models for non technical users. The
model can be used to analyse information flows. The same model
can be used for a full network emulation. This allows real
software and protocols to be tested in a realistic simulated
environment. The flexibility of the software allows its use from
engineering up to campaign planning.

Keywords—C4I; tactical; communications; simulation

I. INTRODUCTION

Simulation and Modelling are important components in the
planning and deployment of military systems. In the Command,
Control, Communications, Computers, and Intelligence (C4I)
space the complexity of heterogeneous systems that are
deployed can have unpredictable outcomes. Planners use their
experience to build C4 architectures but do not have an easy
way to validate them. Simulation can be used to improve
doctrine and processes generally and for specific operations
adapt the architecture to fit the environment.

Modelling is often used during the design and
implementation of new systems. It can be used as a testbed to
provide a detailed simulation during system evaluation[1].
Where simulation is used to look at scenarios a generic
approach is often used with networks generated by algorithms
such as “Small-World” which is not representative of military
networks[2].

Neither technique are commonly used as a tool for pre-
deployment nor on-deployment network planning at the tactical
level. Modelling and Simulation is a specialist area and requires
personnel trained in specific tools and techniques.

This paper presents a novel custom designed tool called
Tactical Network Modeller to readily allow the modelling of a
tactical network and its interconnections. This model can be
built visually with very basic training. This model can be used

to simulate the environment with different back-ends. This
enables generic scenario investigation allowing planning
decisions to be made. A different back-end allows the full
network stack to be emulated so that actual software and
protocols can be investigated.

II. BACKGROUND

There are three major techniques for researching networking
concepts[3]. Live network testing especially in a military
environment is often prohibitively expensive and is not covered
in this paper. This leaves simulation and emulation:

A. Simulation

Time slicing techniques are simplistic and inefficient so
discrete event simulation is preferred[4]. This processes only
when a significant event takes place within the simulation
model. The tracked simulation time is unit-less and can be
arbitrarily chosen as the simulation dictates. This approach can
run much faster than real-time allowing fast scenario analysis.

B. Network Emulation

A discrete event tool such as NS-3 can be used for network
emulation but with limitations[5]. A Network Simulation seeks
to emulate the network stack with as much fidelity as possible.
It will run in real-time allowing standard applications and
protocols to use the emulated network seamlessly. It should
present a standard network layer but should allow that network
to be built and constrained to a specific model. This should
include network effects such as delay, jitter and packet loss.

III. RELATED WORK

Discrete event simulation tools have been widely used in
order to understand how new technologies and network
protocols may work. An example of this would be OverSim
which can be used to investigate peer-to-peer networks and is
built with the OMNeT++ framework[6]. In contrast are tools
such as the stochastic discrete event simulator proposed in [7]
which looks at structures rather than specific technology. That
tool allows scenarios for effects based planning but requires
knowledge of the XML-model to create structure and rules.

Another network emulation approach uses NetEm features
in the Linux operating system(OS) kernel that applies network
effects. This allow properties like packet loss, rate control,
duplication and reordering to be applied [8]. This can be

combined with network namespaces for lightweight emulation
as is done in the Common Open Research Emulator (CORE)
tool [9].

This prior work has produced specific tools which can only
be used for a subset of the types of simulation needed. A model
may have to be built in several tools and kept synchronised.
TNM builds upon and unifies these approaches.

IV. APPROACH

The goal is to produce a usable modelling application which
would allow investigation of scenarios and also allow technical
protocol development and testing. The TNM tool provides a
novel combination of simulation back ends allowing the
resolution of the model to be tailored to the level of the
hierarchy. In [10] a hierarchy of modelling and simulation was
presented going from engineering through engagement and
mission to campaign. TNM can have utility at all levels of that
hierarchy. Emulation can allow real-time and detailed protocol
development, discrete event simulation can model objects as
sub-systems or as entire military formations.

The Objects used to build the model rely on object
orientation within the implementation. This also is reflected in
the structure of the model. In [11] a way of viewing problems
using colours for archetypes is presented. The model has objects
that reflect the Thing, Role, MomentInterval and Description
archetypes. This approach allows the UI and API to present a
coherent structure which can scale easily.

The produced model is a directed graph and shows the
interconnections between simulated elements. Graph
construction is constrained in order to facilitate re-use and to
keep the graph structure logical. In order to do this, a hierarchy
is imposed upon the graph. This hierarchy means that each node
must have a parent and can have one or more children. The
model also provides a graph of the network interconnections.
This graph is then used to control message passing or link
emulation between nodes. The modelled network can have
multiple simulation back-ends attached. For example a model
may include several discrete event back-ends for different
concepts e.g. Voice, Data or Information flow. Within this back-
end the detail of each node's resources and tasks are defined.
The simulation can be run and the results logged for analysis.

TNM provides an API which allows a model to be built
within a Python program. A UI based tool is also provided
which allows the model to be built visually. The two approaches
can be mixed as both the API and the UI can save and load a
common XML file which describes the model.

V. HIERARCHICAL MODELLING

As military organisations tends to be hierarchical the tool
provides a means to build a hierarchy quickly. This allows a
sub-unit to be built and then duplicated. So for example an
infantry section can be modelled and then duplicated so that
there are 3 within a platoon which can then be duplicated so that
there are 3 in a company and so on.

When duplicating a hierarchy the internal connections are
duplicated entirely whereas the external connections are set for
that sub-unit. In order to ensure that this process is manageable
and returns a sensible connection graph, limitations are placed
on the types of connections. The hierarchical connections are a
tool for the modeller rather than a driver for the simulation as
they allow structure to be given to the model but do not directly
affect how the network simulation will work.

A. Node Based

Three types of nodes have slightly different rules applied,
outlined below. They were developed with an object oriented
language and as such the base class is the Network Object. The
Composite and Area Network Objects are specialisations. All
the nodes therefore inherit the behaviour of Network Object.

At the top of the hierarchy is always the Model object which
acts as the default parent for new Objects. It also provides
helper functions for creating the graphs for connection and
hierarchy and finding named objects within the model.

1) Network Object
The base class provides the standard functionality. A

Network Object allows the setting of a name which must be
unique within its siblings. The node provides an interface
concept which allows the building of network connections. The
Network Object can have an arbitrary number of interfaces
which must be uniquely named. An interface can have a
connection (which will become an edge in the model graph) to
any other Object interface. An interface can have multiple
connections and by default are bi-directional. Connections are

Fig. 1. Example model graph with AFV detail rolled up

Company Model

DataNetwork Platoon Platoon.2 Platoon.1

AFVAFV AFV.1 AFV.2 AFV.2 AFV.1 AFV AFV.1 AFV.2

restricted to either siblings or the immediate parent. Inter-
connection between Objects with different parents is prohibited.

2) Composite Object
The Composite Object has all the functionality of the

Network Object but in addition it can act as a parent for any
other Object including other Composite Objects. A Composite
object can act as an Interface for its children to the wider
network. This simplifies outward connections, as an example a
platoon Composite Object could have a company network
interface. The children that will be attached to the company
network will have a connection to the parent representing it. The
parent can then be connected once to the Object representing
this interface. To change the onward connection of this interface
requires only the parent to be changed with no knowledge
needed of the internal structure of that composite. This approach
allows components of the model to be considered as black
boxes and present a consistent interface to the rest of the model.

3) Area Network Object
The Area Network Object exists as an alternative to using

the parent as the interface. It is a specialisation of the Network
Object which does allow connections outside of the parent-child
hierarchy. This can be used to represent the concept of a
network such as a VHF radio network. In a model there may be
a company network which is used at section, platoon and
company level. An Area Network would be placed as a child to
the company Composite Object. Network connections can then
be made within any level of hierarchy of the company.

When a Composite Object is copied containing an Area
Network Object a new version of the Area Network Object is
made and the internal connections within the duplicated
hierarchy are also duplicated.

B. User Interface Modelling

The described capabilities can be used within the user
interface to visually build models. The hierarchical structure is
constructed by dragging a line from the parent object to the

child. The network connections are dragged between the
interfaces. Fig. 1 shows a small portion of a model being built.
The hierarchy can be seen with the black wires while the
network connections have white wires. A new connection is in
the process of being made (orange wire).

Once a portion has been modelled the detail can be hidden
by rolling up each child and just displaying the parent. For
example the Armoured Fighting Vehicle (AFV) could now be
rolled up as the model is complete. The AFV can then be
selected and duplicated. This will make a new AFV which is
still a child of platoon and has the same child objects and
internal connections. The specialised connection to the Area
Network Object will be maintained so the child Data Radio
Object will have its own connection to the Data Network. The
child names will be maintained as they will be unique within
their siblings but the new Composite Object cannot be named
AFV and will be automatically changed to AFV.1, this can be
changed as long as it is unique within its siblings.

C. Building Model using API

It is possible to construct the model using the Python API.
This allows the model to be constructed with defined objects
and connections. An example code snippet that defines the same
model as Fig. 1 would look like:

Model is the root object
examplemodel = Model('Company Model')

Top level objects are parented directly to the model
First argument is always the parent
data_network = AreaNetwork(examplemodel, name='DataNetwork')
platoon = CompositeObject(examplemodel, name='Platoon')

AFV is a child of platoon
afv = CompositeObject(platoon, name='AFV')

The next three are children of AFV
data_radio = NetworkObject(afv, name='Data Radio')
router = NetworkObject(afv, name='Router')
terminal = NetworkObject(afv, name='Terminal')

Interfaces are bi-directional
so can be created from either end
router.add_interface(data_radio)
router.add_interface(terminal)
data_radio.add_interface(data_network)

The duplication of Objects is possible in the same way as
the UI. This should be done in the code when all the detail of
the object and its children has been defined. That detail will then
be copied to the new object. To define a new AFV based on the
already modelled object:

afv2 = afv.copy()

The graph produced by that code can be visualised using a
create_diagram function and is reproduced at Fig. 2. This could
then be scaled by copying the platoon object twice to model a
Company.

VI. NETWORK CONNECTIONS GRAPH

Network connections are distinct to the hierarchical
structure. Network connections can be made between all object
types but is restricted according to some set rules. A child object
can only connect to its siblings, parent, or if it is a composite
object to its own children. The Area Network Object is an

Fig. 2. Portion of a model being built in UI

exception and allows connections regardless of the relative
positions in the hierarchy.

Each object has a single interface point by default but more
can be added as required. Each interface point can have multiple
connections if needed. All connections are bi-directional.

The Network Objects form the vertices in a directed graph
as each network connection forms two directed edges (also
refereed to as arcs) to represent the duplex connection[12]. This
could allow for the modelling of uni-directional links but this is
not implemented at this level. As each vertex has the concept or
multiple interfaces this would allow parallel arcs between
vertices. The produced graph could therefore be a directed
multigraph but as loops are not allowed they are not
pseudographs. Due to each connection producing two edges the
graph is strongly connected.

The software provides the functionality to determine all
paths between two vertices in the graph. This is found using a
Depth-First Search algorithm without weighting the arcs. This
functionality is used by the discrete event simulation back-end
as an analogue to network routing such as Open-Shortest Path
First (OSPF).

VII. SIMULATION BACK-ENDS

TNM allows two types of simulation back-end to be used
with any model: discrete event simulation and network
emulation. For each model it may have multiple back-ends of
either type associated with it. This allows simulations with
different configurations to be specified and run.

A. Discrete event

The discrete event back-end builds on SimPy [13] which is
an open source simulation framework for the Python
programming language. The simulation is specified using 3
different components. These components are attached to an
Object and will be saved and copied when building the model.
This makes it easy to specify a sub-set of the entire model with
the simulation components and then duplicate them to build a
larger structure. The 3 Object types to build a discrete event
simulation are:

1) Resources
A resource can be used to represent any contended resource

such as a human who only has the capacity to process one task
at once or a computer that can handle more concurrency but still
has limitations or a network. A resource could be applied to an
Area Network Object and given a capacity which indicates how
many concurrent users it can have. A delay can also be
specified. As the simulation is run it will ensure that access to
resources is granted based on the specified capacity. All other
waiting processes will be blocked until the resource is available.

2) Tasks
A task is an event triggered at a set time in the simulation

and optionally is repeated a given number of times. The time
between repeats can have a random Gaussian distribution
applied to vary a set delay. Implemented tasks include:

a) Message. This can be routed based on the network
which is determined by the shortest path through the graph. To

simulate a packet based network each resource along the path
is acquired in turn. Once acquired the resource delay is applied
and that resource is then released. This is then repeated for the
next network hop until the destination is reached. A non routed
message is also possible which only implements delays and
capacity at the receiving node not any intermediates.

b) Acknowledgements. Either type of message can
request an acknowledgement. The remote service should then
send a message back.

3) Services
Services can also be assigned to objects. These services

represent processes that can be queried. An example service
would be waiting for messages to arrive and then sending the
acknowledgement. The service has a message queue and is
triggered when an external process places something in this
queue. The service can choose to apply a delay for each
message which will limit the capacity. Due to the simulation
mechanism a service with no delay has infinite capacity and can
deal with requests immediately.

B. Network Emulation

The alternative method of using the model is to run a
network emulation. This uses the network objects and
connections to build a full network emulation. The emulation
uses CORE[9] to construct and run the emulation. CORE
provides a Python API which has eased the integration with
TNM as it is written in the same language.

 CORE uses kernel virtualisation to provide each emulated
network object with its own network interface. These nodes are
then interconnected with bridging and packet manipulation.
Real network hardware can also be integrated in to the network.

Each node can now run any software designed for the Linux
or BSD OS. This allows server software to be run such as web,
email or database servers. Client software can also be run
whether being network loading tools or a full UI application.
One method which makes the deployment of services to each
virtual network object easier is using application
containerisation using Docker[14]. The use of Docker allows
the same software to be deployed in a known state to multiple
nodes in a virtual network. Every run of the emulated
environment is then easily repeatable with no contamination
from other runs. This makes Docker an ideal tool for research
environments[15].

VIII.RESULT CAPTURE

TNM provides the capability to capture the results and
analyse them to make meaningful conclusions. The approach
taken by TNM varies depending on the selected back-end.

A. Logger

TNM has a logging ability which records data in to a Pandas
dataframe [16]. This is saved in the Hierarchical Data Format
(HDF). The logging is flexible and allows textual and scalar
values to be recorded. Each log entry is stamped with the time
as given by the back-end. Pandas is a python data manipulation
library so some standard analysis can be built in to TNM and
each back-end can implement their own data transformations.

B. Network Tools

The logger can provide valuable data for the network
emulation back-end if it is configured but other approaches can
give more detail. As the emulation represents a full network
stack it is possible to use all the tools that are available on a real
network. This allows the use of tools such as Wireshark or
tcpdump to capture actual data traffic either in real time or
recorded for later analysis.

C. Analysis tools

With the data captured there are many possible tools to
conduct analysis. The chosen ones will depend on the objectives
of the simulation and the familiarity of the user.

As the primary log is stored in HDF it is easy to import in to
data analysis tools. They can be reimported back in to a Pandas
dataframe and manipulated. This can be done in python and
plots produced using plotting tools. Some examples can be seen
in the next section.

IX. EXAMPLE SIMULATION

To show some of the capabilities and illustrate a possible
analysis an example model was built and a scenario defined
using the discrete event simulation back-end. Whilst the model
produced was simplistic with few tasks it was possible to find
bottle necks and make assessments about network capacity.

A. Set up Model

The model was defined using the python API but could
equally have been made using the UI. The AFV defined in Fig.
1 was used and built up with 3 AFVs per platoon and 3 platoons
per company. In addition each company was given a company
headquarters (HQ) which was connected to the data network for
the company but also to a separate data network that forms part
of the BattleGroup (BG) level. The BG was made by
duplicating 3 companies and defining a BG HQ. The overall
network is shown at Fig. 3. This shows network connections
emerging from each company and going to the BGDataNetwork
object. They originate from the 2nd radio in each Coy HQ.

The example is at BG level but by using the same process of
parenting and duplication a model can be built up to any level
readily. The duplicated composite objects such as platoons can
be altered after duplication so variations in structure can be
accounted for. TNM allows saving to an XML file and reloading
thus it would be possible to define common sub-units and store
them for later recombination to make the structure required.

B. Simulate

A single simulation back-end was defined using the SimPY
discrete event simulation. Each data network was given a
resource that defined the capacity and delay. Each router also
was given a resource with a set delay and capacity.

Terminals were given a service which would listen for
messages and send an acknowledgement if requested. Each
AFV terminal had a task to send a message to its corresponding
company HQ at a set time repeated to simulate standard reports
and returns. A regular message was sent between AFVs of
different companies which simulates cross boundary position
reporting. Due to the structure of the network the cross
boundary messages have a long network path to the recipient.

The simulation was set to run for a simulated time period of
10 hours in order to have several repeats of each message type.
Due to the discrete event simulation approach the actual run
time was a few seconds. All messages were routed and would
therefore traverse the network in the shortest path but have to
acquire each resources in turn before the message could be sent.
This creates a message based packet switched network.

In the scenario the reports and returns are non-urgent and
sending can be delayed. The reports and returns request an
acknowledgement message. The position reporting message
does not request an acknowledgement but for the scenario has a
requirement of delivery within 10 seconds and is time critical.

C. Results

The simulation was run and produced a log dataframe. The
log contained 49,800 records including resource usage and
every hop of every sent message during the simulation run. In
this time 2041 messages were sent. The simulation was run
several times to explore the scenario and Pandas was used to
extract the message sending time for the position reporting
messages only. The resulting dataframe was exported and used
to produce charts in a spreadsheet.

D. Analysis

The analysis covered the requirement to ensure that position
reports reach their destination in time. This involved several
runs of the simulation with slightly altered parameters. The
simulation was first run without the reports and return messages
and the company and BG data network capacity set to only 1
message at once. The results are in blue in Fig. 4 and show that
the delivery is under the 10 second requirement but with little
margin. As the only place these messages contend with each
other is on the BG data network its capacity was increased to 2
concurrent messages. The result is in orange and shows a
reduction of the delivery time to an acceptable 6.4 seconds.

The reports were then turned on and they clearly contended
with the position reporting as can be seen by the spikes in the
yellow section of the chart. They spike at 21.7 seconds thus not
meeting the requirement. As the reports are only sent within
each company network one option is to increase the network
capacity. It is found, as seen in the green section, that the
capacity would have to be increased to 4 which may not be
possible. As reports are not time critical they can be adjusted. A
random 30 second delay was applied to reports messages and

Fig. 3. Overview of the example simulation model.

Example Model

BattleGroup

BGDataNetwork Company.2 Company.1 Company

this was sufficient to reduce the maximum sending time even
with the company data network capacity remaining at 1 (red
section).

The analysis of this simple network lead to real conclusions.
At times capacity needs to be increased but it is also possible to
meet the requirements with slight changes to the procedures.

E. Other Scenarios

The tool can be used to analyse many different scenarios.
This can be message sending or more abstract information flow.
The tool could be used to explore the timeliness of different
information passing approaches such as voice versus data
communications. The optimisation of voice and data networks
can be performed by running the same tasks over different
topologies.

The network emulation tool can be used to validate the use
of new protocols on restricted networks such as Voice over
Internet Protocol (VoIP) or Enterprise Service Bus. It could even
be used to represent an entire deployment's software
infrastructure on a single powerful workstation.

X. CONCLUSIONS

Whilst there are many simulation packages available they do
not specifically address the needs of the tactical user. The ability
to build models in a simple and intuitive way means the task can
be undertaken by a staff officer rather than a simulation expert.
The discrete event simulation allows this model to be used for a
broad spectrum of military scenarios without the need of
detailed network knowledge.

The same model can be used with the actual software and
services that would be deployed. This allows detailed
exploration of the proposed networks ability to meet the
demands placed on it. This facilitates testing of new software
and network protocols across a valid simulated network.

XI. FUTURE WORK

TNM could be extended to offer more choice of simulation
back-ends such as OPNET, OMNeT++ or ns-3. This could
provide a spectrum of utility between discrete event simulation
and full network emulation.

The SimPY back-end could allow the model designer to
script additional functionality to the service objects. This could
be done using the node UI to build a simple programming UI
similar to that described as Flow Based Programming[17].

REFERENCES

[1] N. Jansen, D. Kramer, and M. Spielmann, “Testbeds for IT Systems in
Tactical Environments,” in 2014 IEEE Military Communications
Conference, 2014, pp. 1293–1298.

[2] A. H. Dekker, “Network topology and military performance,” in
International Congress on Modelling and Simulation: Advances and
Applications for Management and Decision Making, MODSIM05, 2005,
pp. 2174–2180.

[3] S. Guruprasad, R. Ricci, and J. Lepreau, “Integrated network
experimentation using simulation and emulation,” in Testbeds and
Research Infrastructures for the Development of Networks and
Communities, 2005. Tridentcom 2005, pp. 204–212.

[4] S. Robinson. Simulation, “The practice of model development and use.”
Chichester: John Wiley & Sons, 2004.

[5] A. Alvarez, R. Orea, S. Cabrero, X. G. Pañeda, R. García, and D.
Melendi, “Limitations of network emulation with single-machine and
distributed ns-3,” in Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques, 2010.

[6] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay
network simulation framework,” in 2007 IEEE Global Internet
Symposium, GI, 2007, pp. 79–84.

[7] H. Asadi and J. Schubert, “A stochastic discrete event simulator for
effects-based planning,” in Simulation Conference (WSC), 2013 Winter,
2013, pp. 2842–2853.

[8] A. Jurgelionis, J. Laulajainen, M. Hirvonen, and A. I. Wang, “An
Empirical Study of NetEm Network Emulation Functionalities,” in
Computer Communications and Networks (ICCCN), 2011 Proceedings
of 20th International Conference on, 2011, pp. 1–6.

[9] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE: A
real-time network emulator,” in 2008 IEEE Military Communications
Conference, MILCOM 2008 - Assuring Mission Success, 2008.

[10] L. Piplani, J. Mercer, and R. Roop, “Systems Acquisition Manager's
Guide for the use of Models and Simulations.” in Report of the Defense
Systems Management College 1993- 1994 Military Research Fellows,
DSMC Press, Sep 1994

[11] P. Coad, J. de Luca, and E. Lefebvre, “Java Modeling Color with Uml:
Enterprise Components and Process”. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 1999.

[12] J. Bang-Jensen and G. Z. Gutin, Digraphs: theory, algorithms and
applications. Springer Science & Business Media, 2008.

[13] SimPy. “Welcome to SimPY,” [Online]. Available:
http://simpy.readthedocs.org/en/latest/ [Accessed: Mar. 31, 2015]

[14] D. Bernstein, “Containers and Cloud: From LXC to Docker to
Kubernetes,” Cloud Computing, IEEE, vol. 1-3, pp. 81–84, Jan. 2014.

[15] C. Boettiger, “An introduction to Docker for reproducible research, with
examples from the R environment,” (2015) ACM SIGOPS Operating
Systems Review, Special Issue on Repeatability and Sharing of
Experimental Artifacts. 49(1), 71-79, Oct. 2014.

[16] W. McKinney "pandas: a Foundational Python Library for Data Analysis
and Statistics." Python for High Performance and Scientific Computing
2011, pp 1-9.

[17] J. Morrison, "Flow-based programming." In Proc. 1st International
Workshop on Software Engineering for Parallel and Distributed
Systems, pp. 25-29. 1994.

Fig. 4. Chart of position report delivery time over simulation run

0

5

10

15

20

25

